摘要:An approach which based on the combination with lexicon and rules to parse spatiotemporal information of crime cases from the web news was investigated.Designed time word lexicon,time expression rules,police station lexicon,toponymy lexicon and "trigger-crime type" binary classification to extract the information of time,address,police station and crime event type from the web news.Through the design of standardized rules,achieved the structured data of the spatiotemporal and attribute information of the crime cases.It took Fuzhou City as an example,based on the two sets of the data of theft event from four main districts of Fuzhou City from January 2014 to March 2015,one is from the Public Security Department of Fuzhou,the other is the extraction result by this paper.Using the kernel density estimation method to study the crime hotspots,the result are basically the same:Fuzhou theft crime agglomeration occurred in Chating,East Street and Yingzhou Police District.%探討基于詞庫與規則相結合的案(事)件新聞文本時空信息解析方法.通過構建時間詞庫和表達規則、派出所和地名等詞庫以及“觸發詞-案事件類型”二元分類器,實現對案(事)件新聞中的案發時間、案發地點、案(事)件類型和出警派出所信息的抽取,并引用設計規范化規則,實現時空信息的規范化輸出.實驗分別選取本文解析盜竊案件數據和2014年1月至2015年3月福州市四個中心行政城區的公安盜竊案件數據進行比較,利用核密度估計算法研究犯罪集聚區,得到的集聚結果基本一致,發現福州市盜竊犯罪集聚發生于茶亭派出所、東街派出所和瀛洲派出所等轄區.